#单进程#!/usr/bin/python# -*- coding: utf-8 -*-from multiprocessing import Process,Poolimport time,osdef fs(name,seconds): print '%s will sleep: %d s,Now is %s ,fs pid is: %s' % (name,seconds,time.ctime(),os.getpid()) time.sleep(seconds) print 'Now is: %s' % (time.ctime()) return 'fs' + nameif __name__ == '__main__': print 'main Pname is %s' % (os.getpid()) for i in range(1,11): p=Process(target=fs,args=(str(i),2)) p.start() p.join() print 'main end: ' + str(os.getpid())
#定义最大进程数量,Pool默认大小为CPU核心数量#!/usr/bin/python# -*- coding: utf-8 -*-from multiprocessing import Process,Poolimport time,osdef fs(name,seconds): print '%s will sleep: %d s,Now is %s ,fs pid is: %s' % (name,seconds,time.ctime(),os.getpid()) time.sleep(seconds) print 'Now is: %s' % (time.ctime()) return 'fs' + nameif __name__ == '__main__': print 'main Pname is %s' % (os.getpid()) p=Pool(processes=3) #定义最多开启3个进程 for i in range(1,11): p.apply_async(fs,args=(str(i),2)) #如果fs只接受一个参数,则写法为 p.apply_async(fs,args=(a1,)) p.close() p.join() print 'main end: ' + str(os.getpid())
#获取每个进程的执行结果from multiprocessing import Process,Poolimport time,osdef fs(name,seconds): print '%s will sleep: %d s,Now is %s ,fs pid is: %s' % (name,seconds,time.ctime(),os.getpid()) time.sleep(seconds) print 'Now is: %s' % (time.ctime()) return 'fs' + nameif __name__ == '__main__': print 'main Pname is %s' % (os.getpid()) p=Pool(processes=3) #result只能获取函数fs的return语句的结果,与fs中的print无关 result=[] for i in range(1,11): print 'i is: %d' % (i) result.append(p.apply_async(fs,args=(str(i),2))) p.close() p.join() for r in result: print r.get() print 'main end: ' + str(os.getpid())
Win32平台添加如下代码,防止多进程崩溃
from multiprocessing import Process, freeze_supportif __name__ == '__main__': freeze_support()
p.start()来启动子进程
p.join()方法来使得子进程运行结束后再执行父进程
示例:
ping多个域名:
def fping(ip): import subprocess,sys reload(sys) sys.setdefaultencoding('utf-8') sc = subprocess.Popen(['ping.exe',ip,'-n','2'],shell=True,stdout=subprocess.PIPE) while sc.poll() == None: sclines = sc.stdout.readlines() for l in sclines: #return l.strip().decode('GBK') print l.strip().decode('GBK')if __name__ == '__main__': from multiprocessing import Process,Pool,freeze_support,Queue freeze_support() ips=['www.baidu.com','www.163.com','www.sina.com.cn','www.cctv.com','www.xin.com','apollo.youxinpai.com'] p=Pool(processes=4) for ip in ips: p.apply_async(fping,args=(ip,)) p.close() p.join()
函数fping通过使用return取得返回结果:
def fping(ip): import subprocess,sys reload(sys) sys.setdefaultencoding('utf-8') sc = subprocess.Popen(['ping.exe',ip,'-n','1'],shell=True,stdout=subprocess.PIPE) while sc.poll() == None: sclines = sc.stdout.readlines() prs ='' for l in sclines: #return l.strip().decode('GBK') prd = l.strip().decode('GBK') +'\n' prs += prd return prs.strip()print fping('www.baidu.com')
https://docs.python.org/2/library/multiprocessing.html
共享内存变量 multiprocessing.Queue/Array,效率高于manager()
from multiprocessing import Process, Queuedef f(q): q.put([42, None, 'hello'])if __name__ == '__main__': q = Queue() p = Process(target=f, args=(q,)) #q可以传递到函数中,但通过applay_async的方式传递不进去。另这个Queue()有大小限制,大了的话程序就假死。 p.start() print q.get() # prints "[42, None, 'hello']" p.join()
import multiprocessingfrom multiprocessing import Process, Value, Array def f(n, a): n.value = 3.14 a[0] = 5if __name__ == '__main__': num = multiprocessing.Value('d', 0.0) arr = multiprocessing.Array('i', range(10)) #arr = Array('c', 'oaaaaaaaaaaaaaa') #字符串类型 p = multiprocessing.Process(target=f, args=(num, arr)) p.start() p.join() print num.value #返回3.14 print arr[:] #返回[5, 1, 2, 3, 4, 5, 6, 7, 8, 9]
使用共享变量list实现真正的多进程并发:
# -*- coding: UTF-8 -*-from multiprocessing import Process,Pool,freeze_support,Managerimport subprocess,sys,timereload(sys)sys.setdefaultencoding('utf-8')def fping(ip,ls): sc = subprocess.Popen(['ping.exe',ip,'-n','1'],shell=True,stdout=subprocess.PIPE) while sc.poll() == None: sclines = sc.stdout.readlines() ls.append(sclines)if __name__ == '__main__': freeze_support() #使用Manager()在多进程间共享变量ls manager = Manager() ls = [] ls = manager.list() ips=['www.baidu.com','www.163.com','www.sina.com.cn','www.cctv.com','www.xin.com','apollo.youxinpai.com'] p=Pool(processes=4) #定义进程数量 for ip in ips: p.apply_async(fping,args=(ip,ls)) p.close() p.join() #将结果写入到文本文件中 fpingfile = 'e:\\ping.txt' fw = open(fpingfile,'a') for lrs in ls: for lr in lrs: fw.write(lr.strip().decode('GBK') + '\n') fw.close()
共享变量使用dict:
def testfunc(key,value,ls): ls[key]=value print 'process id: ',os.getpid()if __name__ == '__main__': freeze_support() manager = Manager() ls = Manager().dict() p=Pool(processes=8) for ll in range(10): lld = ll+1 p.apply_async(testfunc,args=(ll,lld,ls)) p.close() p.join() print 'main end,main process id: ',os.getpid() print ls返回:{0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10}
共享变量使用value:
def testfunc(cc,ls,lock): #lock.acquire() #效果同with lock写法 with lock: ls.value +=cc #lock.release() print 'process id: ',os.getpid(),' ',ls.valueif __name__ == '__main__': freeze_support() manager = Manager() lock = manager.Lock() #使用multiprocessing中导入的Lock,经测试无法使用,定义为global,或者通过args传递均无法使用 ls = Manager().Value('tmp',0) p=Pool() #processes=2 for ll in range(6): p.apply_async(testfunc,args=(ll,ls,lock)) p.close() p.join() print 'main end,main process id: ',os.getpid() print ls.value #返回15
共享变量Queue的应用:(先进先出,测试的时候,如果不加锁,也能正常put进queue。因为多进程中的queue有安全机制,所以不用加lock)
# 写数据进程执行的代码:def write(q,lock,value): #with lock: lock.acquire() #加上锁 print 'Put %s to queue...' % value time.sleep(0.2) q.put(value) lock.release() #释放锁 # 读数据进程执行的代码:def read(q): while True: #not q.empty(): #value = q.get_nowait() try: q.get(timeout=3) #3秒后还取不到数据则抛出Queue.empty。用该参数变相结束read进程。 print 'Get %s from queue.queue size is %s' % (value,q.qsize()) time.sleep(0.5) except: breakif __name__=='__main__': freeze_support() manager = Manager() # 父进程创建Queue,并传给各个子进程: q = manager.Queue() lock = manager.Lock() #初始化一把锁 p = Pool() for ll in range(10): pw = p.apply_async(write,args=(q,lock,ll)) pr = p.apply_async(read,args=(q,)) #read并发多个进程。 p.close() p.join() print print 'done'
1.
if __name__ == '__main__': #global q freeze_support() q=Manager().Queue() p=Pool() p2=Pool(2) for ll in range(10): pw = p.apply_async(write,args=(ll,q)) #read可以使用另一个进程池,也可以共享queue p2.apply_async(read,args=(q,)) #read并发一个进程 p2.close() p.close() p.join() p2.join()
2.
if __name__ == '__main__': #global q freeze_support() q=Manager().Queue() p=Pool() p2=Pool(2) for ll in range(10): pw = p.apply_async(write,args=(ll,q)) #read可以另起一个进程,也可以共享queue p1=Process(target=read,args=(q,)) #read一个进程 p1.start() p1.join()
3.
for i in range(3): p = Process(target=write2,args=(i,q)) threads.append(p) p.start() for t in threads: t.join()
通过class派生类:
import multiprocessingclass Worker(multiprocessing.Process):
def run(self): print 'In %s' % self.name returnif __name__ == '__main__': jobs = [] for i in range(5): p = Worker() jobs.append(p) p.start() for j in jobs: j.join()
import multiprocessing, Queueimport osimport timefrom multiprocessing import Processfrom time import sleepfrom random import randintclass Producer(multiprocessing.Process): def __init__(self, queue): multiprocessing.Process.__init__(self) self.queue = queue def run(self): for i in range(10): value = self.queue.put(i) print multiprocessing.current_process().name + 'is putting ' + str(i) + ' ' + str(os.getpid()) sleep(randint(1, 3)) class Consumer(multiprocessing.Process): def __init__(self, queue): multiprocessing.Process.__init__(self) self.queue = queue def run(self): while True: d = self.queue.get(timeout=1) if d != None: print multiprocessing.current_process().name + 'is getting ' + str(d) + ' ' +str(os.getpid()) sleep(randint(1, 4)) continue else: break #create queuequeue = multiprocessing.Queue(10) if __name__ == "__main__": print 'start' #create processes threads = [] for i in range(3): pp = Producer(queue) pc = Consumer(queue) threads.append(pp) threads.append(pc) pp.start() pc.start() for t in threads: t.join() 返回:startProducer-1is putting 0 65620Producer-3is putting 0 49132Consumer-6is getting 0 58876Consumer-4is getting 0 55396Producer-5is putting 0 63544Consumer-2is getting 0 62548Producer-1is putting 1 65620Producer-3is putting 1 49132Consumer-6is getting 1 58876Producer-5is putting 1 63544Consumer-2is getting 1 62548Producer-3is putting 2 49132Producer-1is putting 2 65620Producer-3is putting 3 49132Consumer-6is getting 1 58876Consumer-4is getting 2 55396Producer-5is putting 2 63544Consumer-2is getting 2 62548Producer-5is putting 3 63544Producer-3is putting 4 49132Consumer-4is getting 3 55396Producer-5is putting 4 63544Consumer-2is getting 2 62548Producer-1is putting 3 65620Consumer-4is getting 3 55396Producer-3is putting 5 49132Consumer-6is getting 4 58876
经测试:Manage().list()或Queue()在使用过程中效率远低于global变量。
多进程间共享变量:
http://www.tuicool.com/articles/ZZri22
http://www.cnblogs.com/itech/archive/2012/01/10/2318120.html